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Abstract. A biologically motivated model for spatio-temporal coexistence of two competing species is
studied by mean-field theory and numerical simulations. In d ≥ 2 dimensions the phase diagram displays an
extended region where both species coexist, bounded by two second-order phase transition lines belonging
to the directed percolation universality class. The two transition lines meet in a multicritical point, where
a non-trivial critical behavior is observed.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 05.70.Ln Nonequilibrium and
irreversible thermodynamics – 64.60.Ak Renormalization-group, fractal, and percolation studies of phase
transitions

1 Introduction

Nonequilibrium models with phase transitions into ab-
sorbing states arise in studies of biological populations,
chemical reactions, spreading of diseases, and many
other [1–5]. An absorbing phase is a subspace of states
that can be reached but not be left by the dynamics.
In biologically motivated models absorbing phases occur
whenever a system reaches a configuration or a dynamical
state from where it cannot escape. In many cases an ab-
sorbing state is characterized by a complete loss of activ-
ity. It is believed that phase transitions into an absorbing
state generically belong to the directed percolation (DP)
universality class [6–8]. DP is extremely robust and in-
cludes even models with several species of particles [9–11]
and infinitely many absorbing states [12,13]. Exceptions
from DP are usually observed in models with long-range
interactions, quenched randomness, and non-conventional
symmetries such as a Z2-symmetry or conservation of par-
ticle number.

In models with several species of particles and sev-
eral absorbing states, there exist in addition to transitions
where one species goes extinct, multicritical points where
several reduced control parameters vanish simultaneously.
Such multicritical points are characterized by a hierarchy
of order parameter exponents with only one of them being
the DP exponent, and by a crossover exponent φ [14,15].
Again, the multicritical behavior is different in the pres-
ence of symmetries [16].

Most DP models have in common that active sites may
become inactive at a certain rate, i.e. particles can dis-
appear spontaneously. But even models with a different
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mechanism for particle removal may belong to the DP
class. For example, in branching and annihilating random
walks particles can only annihilate pairwise, leading to an
algebraic decay in the subcritical phase. Until recently, it
was believed that such models do not show a DP-like phase
transition in dimensions larger than two. However, as has
been shown by Canet et al. [17], in higher dimensions such
transitions occur also, but only beyond a minimum anni-
hilation rate, so that freshly produced offspring can anni-
hilate with its parent with a sufficiently large probability
before diffusing away.

In this article, we consider a two-species model, which
is inspired by biology. A special feature of this model is
that one of the two species (denoted as S) cannot van-
ish spontaneously, instead it can only be destroyed by the
other one (called A). In one dimension it turns out that
the two species cannot coexist and the phase transition
is discontinuous for the first species. In higher dimensions
the two species can coexist in a certain region of the phase
diagram, giving rise to three different phases. We find nu-
merically that all phase boundaries where one species be-
comes extinct, are in the DP class, while the multicriti-
cal point where the two critical lines meet, shows a more
complex scaling behavior. Near the multicritical point, the
critical region becomes very small, and therefore the DP
behavior can hardly be seen in numerical simulations. We
apply numerical studies as well as mean-field calculations
and scaling arguments. In addition to the stationary state,
we also investigate the dynamical behavior starting from
a random initial state. We find that two different scaling
forms are needed to describe different dynamical regimes.

The outline of this paper is as follows: in the next sec-
tion, we motivate and define our model. In Section 3 we
formulate a mean field theory and discuss the correspond-
ing phase diagram. Numerical simulations in one and two
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spatial dimensions are presented in Section 4. In Section 5
we suggest a phenomenological scaling theory for the dy-
namical and the stationary regimes. Finally, we summarize
our findings in Section 6.

2 Definition and motivation of the model

The model is defined on a d-dimensional hypercubic lat-
tice with Ld sites. Each lattice site is occupied either by
species A, or by species S, or it is empty. The system
evolves random-sequentially according to the following dy-
namic rules:

– any site that has a nearest neighbor occupied by
species A becomes itself occupied by species A with
rate λA, irrespective of its previous state;

– an empty site that has a nearest neighbor occupied by
species S becomes itself occupied by species S with
rate λS ;

– a site occupied by species A turns into an empty site
with rate µ.

This means that the model follows the reaction-diffusion
scheme

A + ∅ λA−→ 2A, A
µ−→∅, (1)

A + S
λA−→ 2A, S + ∅ λS−→ 2S.

The model can be considered as a patch occupancy model
for the coexistence of two consumer species feeding on
the same resources. The two species cannot coexist in the
same patch, and therefore each patch is occupied at most
by one of the two species [18]. Species A has the higher
fitness and therefore displaces species S when it enters
a patch occupied by S. However, species A has a certain
risk of dying out in a patch, for instance because it cannot
respond well to adverse circumstances, such as illness or
extreme weather conditions. A and S may stand for an
asexual and a sexual species, for instance oribatid mites
in the soil [19], or ostracods in ponds lakes [20], where
asexual and sexual species are known to have coexisted for
a long time. Asexual species have a higher reproduction
rate, but can accumulate deleterious mutations [21], which
reduce their fitness below that of the sexual variant.

In our model the dynamics of species A is not affected
by the presence of S since empty sites and sites occu-
pied by S can both be conquered by A. The dynamics
of species A is therefore a version of DP, and the phase
transition of species A to extinction is in the DP univer-
sality class. More specifically, the dynamic rules of the A’s
are equivalent to those of a so-called contact process [22],
which is a well-studied lattice model of DP with random-
sequential updates. Precise estimates of the percolation
threshold λ

(c)
A /µ [23–25] and the critical exponents [5] can

be found in the literature and are summarized in Table 1.
In absence of species A, species S spreads and eventu-

ally occupies the entire system. In presence of species A
patches of species S can only be destroyed if they are

Table 1. Critical percolation thresholds λ
(c)
A /µ of the contact

process of A-particles and the corresponding critical exponents
of DP in d+1 dimensions.

d λ
(c)
A /µ β ν⊥ ν‖

1 1.648924(11) 0.276486(8) 1.096854(4) 1.733847(6)
2 0.41219(1) 0.583(3) 0.733(8) 1.295(6)
3 0.219477(2) 0.813(9) 0.584(5) 1.110(1)
4 0.14938(2) 1 1/2 1

Table 2. Fixed points of the mean-field equations (2, 3) and
the corresponding conditions for stability.

F. point ρA ρS conditions for stability
F1 0 0 λS < 0 λA < µ
F2 0 1 λS > 0 λA < µ

F3 1 − µ
λA

0 λS <
λ2

A
µ

− λA λA > µ

F4 1 − µ
λA

µ
λA

+ µ−λA
λS

λS >
λ2

A
µ

− λA λA > µ

invaded by species A. Since the distribution of A is not
homogeneous but highly correlated, patches occupied by
S are not destroyed randomly, and it is not obvious that
the phase transition to extinction of S has to be in the uni-
versality class of directed percolation. We will see below
that this is nevertheless the case in dimensions larger than
one, although the DP behavior is difficult to see when the
density of A is low.

3 Mean field theory

Let us first discuss the mean-field theory of the model. The
mean-field equations for the densities of species A and S
are

ρ̇A(t) = λAρA(t)
[
1 − ρA(t)

] − µρA(t), (2)

ρ̇S(t) = λSρS(t)
[
1 − ρA(t) − ρS(t)

] − λAρS(t)ρA(t).

(3)

The mean-field approximation can be viewed as the case
where the A or S can move to any patch of the lattice
with a given rate λA/Ld or λS/Ld, and not only to nearest
neighbors, in the limit of infinite system size L → ∞.

3.1 Stationary case

In order to determine the mean-field phase diagram we
computed the stationary solutions of equations (2, 3). Ta-
ble 2 lists the fixed points and the corresponding station-
ary densities ρA and ρS together with the conditions for
their stability. The fixed point F1 is unstable since λS and
λA cannot be negative. The other three fixed points are
stable in different parts of parameter space.

In the phase diagram the three fixed points corre-
spond to three different phases (see Fig. 1). In the sub-
critical phase (marked by S) species A dies out so that
species S eventually conquers the whole system, approach-
ing the stationary density ρS = 1. In the coexistence phase
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Fig. 1. Mean-field phase diagram. In phase S species A dies
out so that species S conquers the whole system, while in
phase A species S dies out. In phase A;S both species coexist,
leading to a non-trivial fluctuating stationary state.

(marked by A;S) both species can coexist, leading to a
non-trivial fluctuating stationary state with the densities

ρA = 1 − µ

λA
, (4)

ρS =
µ

λA
+

µ − λA

λS
. (5)

Finally, in the phase denoted by A in Figure 1, the density
of species A is so high that species S becomes extinct. Here
equation (4) is still valid while ρS = 0.

The three phases are separated by two lines of contin-
uous phase transitions, a vertical one at λA/µ = 1 and a
curved one in form of a segment of a parabola

λ∗
S = λ∗

A

(
λ∗

A

µ
− 1

)
. (6)

Approaching the vertical line from right to left the station-
ary density ρA vanishes linearly. The critical exponent β
is therefore 1, just as in the standard mean-field theory of
directed percolation. The same applies to the density ρS

approaching the curved phase transition line from the left.
This supports our numerical findings (see below) that both
lines represent DP transitions.

The two phase transition lines meet at the multicritical
point λA/µ = 1; λS = 0. In order to discuss the behav-
ior in the neighborhood of the multicritical point in more
detail, it is convenient to introduce the parameters

εA = λA/µ − 1, εS = λS/µ, (7)

which measure the reduced distances from the multicriti-
cal point in horizontal and vertical direction, respectively.
In terms of these parameters the curved transition line (6)
is given by

ε∗S = ε∗A(1 + ε∗A). (8)
Close to the multicritical point, where both parameters
are small, the densities scale as

ρA = 1 − 1
1 + εA

� εA, (9)

ρS =
1

1 + εA
− εA

εS
� 1 − εA

εS
. (10)

As we decrease εA from εS to 0, we move horizontally from
the curved to the vertical transition line, and ρS increases
linearly from 0 to 1. Similarly, as we increase εS from εA

to a value much larger than εA, we move from the curved
transition line vertically upwards, and ρS increases from 0
to a value close to 1. Denoting by

∆A = ε∗A − εA and ∆S = εS − ε∗S (11)

the horizontal and vertical distances between a given point
(εA, εS) and the curved transition line, we have for ∆A �
εA, ∆S � εS

ρS =
∆A

εS
=

∆S

εA
. (12)

Therefore, the linear decrease of ρS does not depend on the
direction in which the curved phase transition line is ap-
proached. However, the slope increases and finally diverges
as we approach the multicritical point. This indicates that
the transition with respect to S at the multicritical point
may no longer belong to the DP class.

3.2 Time-dependent mean field solution

In order to understand the dynamical properties, let us
now solve the time-dependent mean field equations (2, 3)
explicitely. Since species A evolves independently accord-
ing to the rules of DP equation (2) is autonomous. With
εA = λA/µ − 1 and εS = λS/µ the solution (up to a shift
in time) reads

ρA(t) =
εA

(1 + εA)
[
1 − exp(−εAµt)

] . (13)

Close to criticality in the active phase 0 < εA � 1 this
density first decays as a power law

ρA(t) � 1
(1 + εA)µt

(14)

until it crosses over to the stationary value given in equa-
tion (9) at some typical crossover time tc ∼ 1

µεA
.

Inserting the solution (13) into the second mean field
equation (3), it is in principle possible to compute the
time-dependent density ρS(t).

Let us first consider the case εA = 0 (the vertical line
in Fig. 1), where the DP process of species A is critical.
Inserting equation (14) into equation (3), the second mean
field equation reduces to

ρ̇S(t) = −ρS(t)
t

[
1 + εS + εSµt

(
ρS(t) − 1

)]
. (15)

At the multicritical point εS = εA = 0 this differential
equation further reduces to ρ̇S(t) = −t−1ρS(t) so that the
density ρS(t) ∼ 1/t decays in the same way as ρA(t). For
εS > 0, however, we find the formal solution

ρS(t) =
exp(εSµt)

(εsµt)1+εS

[
C +

∫ εSµt

1 ez z−1−εs dz
] , (16)
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Fig. 2. Temporal evolution of the density ρS(t) according to
the mean-field solution (16) for εA = 0, εS = 0.1, µ = 1 and
c = 103. The three regimes are explained in the text.

where C is an integration constant. To get an impression
about the behavior for εS > 0, we plotted this function in
Figure 2. As can be seen, there are three different dynami-
cal regimes enumerated by I, II, and III. In the first regime
the density ρS(t) decreases algebraically as 1/t1+εS , fol-
lowed by a quick increase in the second regime until the
density saturates at 1 in regime III.

The observed behavior can be interpreted as follows.
Starting with a homogeneously distributed mixture of
species A and S, the displacement of S by A initially
dominates the dynamics. In regime II the spreading of S
to empty patches, as expressed by the linear term λSρS(t)
on the r.h.s. of equation (3), becomes relevant so that the
S-population begins to grow exponentially in the voids
of the critical A-process. The growth of the S-population
continues until all accessible voids are filled and the den-
sity ρS(t) reaches its stationary maximum in regime III.

Next, let us consider the dynamics on the curved phase
transition line close to the multicritical point. Using equa-
tions (8) and (13), expanding εS and ρA in powers of εA

and keeping only terms up to the third order in the densi-
ties and/or the control parameter, equation (3) turns into

1
µ

ρ̇S(t) = − εA(1 + εA)
exp(εAµt) − 1

ρS(t) − εAρ2
S(t). (17)

The solution is

ρS(t) =
[1 − exp (−εAµt)]−1−εA

C̃ +
∫ εAµt

1
(1 − e−z)−1−εA dz

(18)

with an integration constant C̃. This is a monotonous de-
cay of the density ρS . For short times, it is approximated
by ρS ∼ 1/t, as we have obtained before. For large times,
the density ρS approaches the behavior ρS � 1/εAµt, i.e.,
the decay is delayed. This large-time behavior is indepen-
dent of the initial value of ρA, and it would therefore also
be obtained if we had started with the stationary solution
for ρA.

Fig. 3. Space-time plot of the 1+1-dimensional model. White
and black sites correspond to species S and A respectively, and
grey sites correspond to empty patches.
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Fig. 4. Stationary density as a function of the control param-
eter λ/µ in one dimension (here λ = λA = λS).

4 Numerical simulations

4.1 Simulations in 1+1 dimensions

The 1+1-dimensional case is special in so far as species A
and species S cannot coexist since the world lines of A and
S cannot cross each other. Hence a species that persists
forever leaves no room for a world line of the other species.
Figure 3 shows a space-time plot of A, S and empty sites
in the parameter range where A persists. As can be seen,
starting from a random initial state, species S eventually
dies out.

The stationary densities for A and S as functions of
the control parameter λA/µ were measured in numerical
simulations using a system size of L = 50 000 sites. As
shown in Figure 4, species S undergoes a first-order phase
transition from unit density to zero density at the critical
point λ

(c)
A of species A.
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Fig. 5. Numerically determined phase diagram in 2+1 dimen-
sions. The dotted lines denote the size of the critical regions
for variation of λA/µ(dotted line) and λS/µ (dashed line).

4.2 Stationary properties in 2+1 dimensions

In higher spatial dimensions both species can coexist and
one obtains a phase diagram with two continuous tran-
sition lines, which is qualitatively similar to that of the
mean-field approximation. The numerically determined
phase diagram in 2+1 dimensions is shown in Figure 5.
The critical thresholds obtained by varying λA/µ agrees
with those obtained by varying λS/µ, which confirms the
correctness of the results. The multicritical point is lo-
cated at

λ
(c)
A /µ = 0.41219(1), λ

(c)
S = 0, (19)

where the evolution of species A is critical and branching
of S is not allowed. In fact, even for very small λS > 0
species S should be able to survive as species A becomes
extinct, eventually approaching ρS = 1. Therefore, as in
mean-field theory, the multicritical point is located exactly
at λ

(c)
S = 0.
In order to determine the critical exponents in the sta-

tionary state, we performed simulations at several points
in the phase diagram close to the phase boundaries. The
lattice size was L2 = 300 × 300 sites. After 200 000 time
steps the densities of A and S reached a stationary value.
The fluctuations were within 5% of this value. To deter-
mine the mean densities, the density was averaged over an
additional 100 000 time steps.

For the extinction of species A at the vertical tran-
sition line, the expected directed percolation behavior
ρA ∼ (λA−λ

(c)
A )βA with βA = βDP � 0.583 is clearly seen

in the simulations. However, the evaluation of the critical
exponent βS in the vicinity of the curved phase transition
line turned out to be more difficult. For example, close to
the multicritical point the estimates were found to depend
on the direction in which the line is approached, which is
known to be impossible in standard critical phenomena.
In fact, reliable estimates could only be obtained far away
from the multicritical point. Choosing λS/µ = 60, where
the density of species A is high, and estimating the expo-
nent only in a limited range of the data close to criticality
(see Fig. 6), we find numerical evidence that the transition
along the curved line belongs to the DP universality class.

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-6 -5 -4 -3 -2 -1

ρ S

ln(λA/µ-(λA/µ)*)

Fig. 6. Logarithmic plot of the stationary density ρS for
λS/µ = 60 as λA/µ is varied. A power-law fit in the interval
|λA/µ − (λA/µ)|∗ <= 0.05 yields the estimate βS = 0.583(3).
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Fig. 7. Logarithmic plot of ρS, including its fluctuations for
λA/µ = 1. The power-law fit gives the exponent β = 0.584(9).

Approaching the multicritical point deviations from
the expected power law behavior become more pro-
nounced. This is demonstrated in Figure 7, where we mea-
sured ρS for λA/µ = 1, approaching the curved transition
line vertically from above. To estimate the size of the crit-
ical region, the data points for ρS were plotted including
error bars. Then, a power-law was fitted to the first k
data points, with k being small enough to be close to the
scaling regime. The measured critical exponent was com-
patible with βS = 0.585± 0.05 everywhere. This confirms
that the entire phase transition line (the solid curved line
in Fig. 5) except for the multicritical point belongs to the
DP universality class.

In order to quantify how the critical behavior is ap-
proached we defined critical regions whose size is deter-
mined by the requirement that the error bar of the last
data point in Figure 7 still touches the power-law fit.
The size of these regions with respect to variations of λA

and λS are indicated in Figure 5 by dashed lines. Although
their size is arbitrary in the sense that it depends on the
chosen accuracy of the computer simulations, it illustrates
why estimates far away from the multicritical point are
more reliable. Moreover, it is interesting to note that the
critical region for variation of λA/µ is much larger than
the one for λS/µ.
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As we approach the multicritical point the critical re-
gions become narrower for both variations. In the imme-
diate vicinity of the multicritical point (λA/µ < 0.5 and
λS/µ < 1), a reliable estimation of the critical exponent
βS becomes extremely difficult due to huge fluctuations of
ρS . Here we have an almost instant increase in the density
of S as we vary the control parameters. Below, we will de-
termine the shape of the curved phase transition line close
to the multicritical point with a better precision by using
dynamical simulations.

4.3 Dynamical properties in 2+1 dimensions

In order to compare the time dependence of ρS(t) in 2+1
dimensions with the mean field prediction shown in Fig-
ure 2, we first performed numerical simulations along the
vertical line λA = λ

(c)
A , where the DP process of species A

is critical. Starting with a homogeneous random mixture
of both species, we monitor the evolution of the densities
ρA(t) and ρS(t) for various values of λS/µ.

The results of simulations at the multicritical point
λA = λ

(c)
A , λS = 0 are shown in Figure 8. As expected, the

density of species A decays as

ρA(t) ∼ t−δ, (20)

where δ = β/ν‖ ≈ 0.451 is the usual decay exponent of
DP in two dimensions. Similarly, the density of species S
is found to decay algebraically as ρS(t) ∼ t−θ with an
exponent θ ≈ 1.6.

The value of the exponent θ can be explained as fol-
lows: initially each site is randomly occupied by A or
S with equal probability. As time evolves the critical
DP-process of species A gradually removes species S, lead-
ing to a monotonous decrease of ρS(t). As species S does
not create offspring at the multicritical point, all sites oc-
cupied by S at time t are precisely those sites that have
never been occupied before by species A. Hence ρS(t) is

the probability that a given site has never been visited by
the DP process of species A. In the literature this prob-
ability is known as the local persistence probability [26]
P�(t) of directed percolation. This quantity was shown to
decay algebraically as P�(t) ∼ t−θ, where θ is the so-called
local persistence exponent which seems to be independent
of the other DP exponents. In one spatial dimension its
value was estimated by θ = 1.50(1), while in two dimen-
sions we find a slightly higher value θ = 1.58(3). This
observation allows us to conclude that ρS(t) decays at the
multicritical point as

ρS(t) ∼ t−θ, (εA = εS = 0) . (21)

Increasing λS (while keeping the A-process critical) we al-
low species S to expand in the voids of the A-process. In
this case the algebraic decay (21) is expected to cross over
to a growth of surviving S-domains. This density contin-
ues to increase until the entire empty space is conquered so
that ρS approaches the value 1. Our simulation results for
this process are shown in the top left panel of Figure 10.
Obviously, the temporal behavior of ρS(t) resembles the
mean field solution in Figure 2, where three different dy-
namical regimes were identified. However, as an impor-
tant difference we note that in regime II the density ρS

increases algebraically as td in finite-dimensional systems
whereas in the mean-field limit the increase is exponen-
tial. Consequently, the two crossover time scales between
the regimes are expected to scale differently.

Next, we performed numerical simulations on the
curved phase transition line. The results are shown in the
top right panel of Figure 10. For short times, ρS decays
again as t−θ, i.e., the difference between the two critical
lines is not yet felt. For large times, when ρA has become
stationary, ρS decays as t−δ, i.e., it behaves as a directed
percolation process at its critical point. Between these two
regimes, there is an increase in the density ρS , which is
not seen in the mean-field theory. As we will discuss fur-
ther below, the reason for this is that the characteristic
time scales for the cutoff of the initial decay and the onset
of the DP decay scale differently with εS , while there is
no distinction between the two scales in mean-field theory.
Therefore, in two- or three-dimensional systems the den-
sity ρS increases in the intermediate regime, where the
spreading to empty patches has become relevant, while
the critical DP behavior, which requires stationary of ρA,
is not yet established. In analogy to the behavior on the
vertical transition line, we denote the three regimes of ini-
tial decay, intermediate increase and ultimate decay with
regime I, II, and III.

4.4 Functional form of the curved transition line

In the mean-field case the curved transition line was shown
to be a segment of a parabola which terminates at the
multicritical point with slope 1 (see Eq. (6)). In low di-
mensions it is therefore natural to assume a power-law of
the form

ε∗S ∝ (ε∗A)y , (22)
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Fig. 9. Left panel: critical line for the extinction of species S for small ε∗A and ε∗S . Right panel: corresponding local slopes for
a visual extrapolation. The inset suggests an asymptotic value y ≈ 0.7.

where again

εA =
(
λA − λ

(c)
A

)
/µ, εS = λS/µ (23)

are the reduced parameters and y is an unknown exponent
with the mean-field value yMF = 1. As in the mean-field
case, this power law may be superposed by next-leading
algebraic corrections.

In order to determine the value of the unknown ex-
ponent y in 2+1 dimensions numerically, we adjusted the
parameters εA and εS in such a way that ρS(t) decays
eventually in the same way as in a DP process. However,
the determination of y turns out to be extremely difficult.
In particular, the estimates seem to drift to smaller values
as we approach the multicritical point. Extrapolating the
local slopes (see Fig. 9) we arrive at the conclusion that
y ≤ 1, probably y ≈ 0.7(2).

5 Scaling properties

In this section, we interpret the observed results in terms
of phenomenological scaling arguments. It turns out that
the presence of different scales makes it impossible to for-
mulate a unified scaling theory for the whole dynami-
cal range, instead we find two different scaling forms for
regimes I, II and II, III, respectively with a common over-
lap in region II.

Starting point is the DP-process of species A which
decouples from the dynamics of species S. Close to criti-
cality this DP process is known to be invariant under scale
transformations

εA → ΛεA, ρA → ΛβρA, t → Λ−ν‖t, (24)

where Λ > 0 is a scaling factor while β and ν‖ are DP ex-
ponents listed in Table 1. As usual scale invariance implies
that the density is a homogeneous function, i.e.,

ρA (εA, t) = Λ−βρA

(
ΛεA, Λ−ν‖t

)
. (25)

Setting Λ = t1/ν‖ and suppressing non-universal metric
factors one obtains the usual scaling form

ρA(t) = t−δ FA

(
εAt1/ν‖

)
, (26)

where FA is a universal scaling function. In order to derive
a similar scaling form for the dynamics of species S in the
vicinity of the multicritical point, it is natural to postulate
analogous scaling properties for εS and ρS , i.e.

ρS → Λx1ρS , εS → Λx2εS (27)

with certain exponents x1 and x2. Scale invariance then
implies that

ρS (εA, εS , t) = Λ−x1 ρS

(
ΛεA, Λx2εS , Λ−ν‖t

)
. (28)

Choosing again Λ = t1/ν‖ we are led to the scaling form

ρS (εA, εS , t) = t−x1/ν‖ FS

(
εA t1/ν‖ , εS tx2/ν‖

)
(29)

where FS is another scaling function. However, as we will
see below, this simple scaling form is not capable to de-
scribe the whole dynamical evolution of ρs, instead it can
be used only partially either in the regimes I, II or in II, III,
in each case with a different set of exponents x1 and x2.
Furthermore, sufficiently close to the curved critical line,
the distance from the critical line becomes a relevant pa-
rameter, and we will derive a scaling form that uses this
variable.

5.1 Crossover between the regimes I and II

In regimes I and II, the decay of ρA is yet far from becom-
ing stationary, and the decay of ρS should be described by
the same expression (29) everywhere near the multicritical
point, and in particular on the two critical lines.

In order to determine the exponents x1 and x2 in
regimes I and II let us first consider the multicritical
point εA = εS = 0. Here the scaling form (29) reduces
to ρS(t) = t−x1/ν‖FS(0, 0) which — compared with equa-
tion (21) — gives

x1 = θν‖. (30)

Moving up the vertical phase transition line, the DP pro-
cess of species A remains critical but species S recovers
after some time. It is natural to expect that the crossover
from decay (regime I) to subsequent growth (regime II)
takes place at a typical time scale

t(1)c ∼ 1/εS (31)
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Fig. 10. Simulations in 2+1 dimensions. The left column shows results obtained along the vertical transition line εA = 0
for εS = 0.0001, 0.0002, . . . , 0.1024 while the right column displays similar results taken at the curved phase transition line
for ε∗A = 0.0016, 0.0032, . . . , 0.2048. Data sets far away from the multicritical point (εS ≥ 0.0512), where scaling is poor, are
represented as dotted lines. The panels are arranged in three rows. The first row shows the densities ρS(t) and ρA(t), the latter
vertically shifted. In the second row the scaling form (33) is used to collapse the curves in the dynamical regimes I and II (see
text). Similarly, the third row shows data collapses based on the scaling form (38) which is valid in the regimes II and III. The
respective crossovers are indicated by vertical dashed lines.

which is inversely proportional to the rate of spreading
of species S. Scale invariance of the second argument of
equation (29) then implies that

x2 = ν‖. (32)

Therefore, we arrive at the scaling form

ρS (εA, εS , t) = t−θ F
(1)
S

(
εA t1/ν‖ , εSt

)
. (33)

This scaling form can be verified along the vertical line
by plotting ρS(t)εθ

S versus tεS for various values of εS and
checking for a data collapse. As shown in the second row of
Figure 10, this data collapse works nicely at the crossover
between the dynamical regime I to II (initial decay and
subsequent increase) while it clearly fails in regime III.

The first argument of F
(1)
S is in fact irrelevant, since

the density ρS does not depend on it in regimes I and II.
However, it will be relevant in regime III, where ρA be-
comes stationary and determines the long-term behavior
of ρS .

5.2 Crossover between the regimes II and III

The failure of a data collapse in regime III according to
equation (33) suggests the presence of two different time
scales in the system, namely, a crossover time scale

t(1)c ∼ ε−1
S (34)

from where on offspring production becomes relevant, and
a second time scale t

(2)
c from where on species S feels the
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Fig. 11. Left panel: same data as in Figure 10f, but with time measured in units of ξ‖ ∼ ε
−ν‖
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panel: simulation with the same parameters, but with a stationary initial distribution of A particles.

stationary behavior of species A which either induces a
critical DP-like decay of species S towards zero on the
curved transition line or to an asymptotically stationary
value of ρS in the coexistence region and on the vertical
line. To determine this second crossover time let us first
consider the vertical phase transition line, where species
A evolves as a critical contact process. After the initial
persistence-like decay the remaining S particles are the
seeds of d-dimensional spheres growing linearly by off-
spring production essentially unchallenged by species A.
Therefore, in finite dimensions d the density ρS increases
as td. On the vertical phase transition line this growth
continues until the density of species S saturates at the
value ρS ≈ 1, which defines the second crossover time.
Thus, matching initial decay and subsequent growth this
second crossover time has to scale as

t(2)c ∼ ε
−1−θ/d
S . (35)

Therefore, in finite dimensions the two crossover times t
(1)
c

and t
(2)
c scale differently with respect to εS which explains

the necessity of two separate scaling forms.
The exponents x1 and x2 for the crossover from

regime II to regime III can be determined as follows. On
the one hand, the density ρS saturates at the value 1 for
t → ∞ on the vertical phase transition line, independent
of εS , implying that

x1 = 0. (36)

On the other hand, scale invariance of the argument of the
scaling function in equation (29) requires that

x2 =
ν‖

1 + θ/d
. (37)

Therefore, the resulting scaling form reads:

ρS (εA, εS , t) = F
(2)
S

(
εA t1/ν‖ , εSt1/(1+θ/d)

)
. (38)

This scaling form can be verified numerically by a data col-
lapse along the vertical transition line, as demonstrated
in Figure 10e. In Figure 10f we demonstrate that this
data collapse works not only at the vertical transition line
but also along the curved phase transition line. Since the
DP-like decay of ρS is expected to set in when ρA be-
comes stationary, i.e., at time t ∼ ε

−ν‖
A , it follows that

the two time scales, namely, the DP correlation time
ξ‖ ∼ ε

−ν‖
A and the second crossover time t

(2)
c ∼ ε

−(1+θ/d)
S

become identical on the curved critical line. More specifi-
cally, the phase transition line is expected to be character-
ized by a constant value of the scale-invariant combination
ε
−ν‖
A /ε

−(1+θ/d)
S , hence

ε∗S ∝ (ε∗A)y , y = x2 =
ν‖

1 + θ/d
. (39)

Inserting the numerical estimates ν‖ = 1.295(6) and θ =
1.58(3) we obtain

y = 0.72(1) (40)

in fair agreement with the numerically extrapolated value
in Section 4.4.

For large times, the expression (38) for ρS must ap-
proach an asymptotic value that is independent of time.
We therefore obtain

lim
t→∞ F

(2)
S (z1, z2) =

z2

zε
1

∼ εS

εy
A

. (41)

This implies that lines of constant density in the εS-εA-
plane are given by constant ratios εS/εy

A.
As we have mentioned, the scaling relation (39) implies

that the DP-like decay of species S sets in only after its
density has increased to a considerable value. At this time
species S has lost the memory of its past, and its dynam-
ics is essentially determined by species A. Therefore, the
time evolution ρS(t) is from then on identical to the one
obtained starting the simulation with a stationary ρA and
with a finite and random occupation with S. This con-
clusion is supported by comparing the two simulations, as
shown in Figure 11. The range of the axes is the same in
both panels, and one can clearly see that for sufficiently
large times the two types of curves agree. This agreement
of the large-time behavior for the two different types of
initial conditions occurs also in the mean-field theory, as
mentioned at the end of Section 3.

5.3 Scaling near the curved transition line in regime III

Finally let us study the asymptotic critical behavior of ρS

in the vicinity of the curved phase transition line. Close
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to the multicritical point we have shown that this line can
be parametrized by

ε∗S = a(ε∗A)y, (42)

where a is non-universal metric factor. On the curved line
the density ρS(t) decays asymptotically as t−δ, i.e., as in
a critical DP process. Slightly above in the coexistence
phase, ρS(t) will eventually saturate at a value propor-
tional to (∆S)β , where ∆S = εS − ε∗S denotes again the
vertical distance from the line. This means that in ad-
dition to the previously discussed invariance under the
transformation

εA → ΛεA, εS → ΛyεS , t → Λ−ν‖t (43)

the system simultaneously has to be invariant under the
DP-like scale transformation

∆S → Ω∆S , t → Ω−ν‖ t, ρS → ΩβρS (44)

with another scale factor Ω independent of Λ. The second
type of scale invariance further constraints the form of
ρs(εA, εS , t), effectively reducing the number of indepen-
dent arguments in the corresponding scaling form to 1.
To see this it is convenient to switch from the parameters
(εA, εS) to the parameters (εA, δS), where

δS(εA, εS) =
∆S

ε∗S(εA)
=

εS

aεy
A

− 1 (45)

is the normalized distance from the critical line. In terms
of these new parameters, the scaling form (38) is expressed
equivalently as

ρS(εA, δS , t) = GS(εA t1/ν‖ , δS), (46)

where GS(z1, z2) = F
(2)
S

(
z1, azy

1 (1 + z2)
)
. Obviously, the

parameter δS is invariant under the first type of scale
transformation (43) while it scales as δS → ΩδS under
the second type of scale transformations (44). Applying
the latter to the scaling form (46) yields

ρs(εA, δS, t) = Ω−β GS(Ω−1εA t1/ν‖ , ΩδS). (47)

Setting Ω = δ−1
S one obtains

ρS(εA, δS , t) = δβ
S G̃S(δS εA t1/ν‖). (48)

In fact, the argument δS εA t1/ν‖ is a scale-invariant ratio
under both types of scale transformations, proving that
the off-critical DP-process of species A and the almost-
critical DP-process of species S can be described in terms
of a unified scaling theory. We emphasize that this scaling
form is valid only in the temporal regime III close to the
curved phase transition line, where δS � 1.

The scaling form (48) reproduces the expected DP be-
havior. Initially the system does not yet feel the influence
of δS , hence G̃S(z) ∼ z−β for small z. Later, for δS > 0,
the initial DP-like decay of ρS crosses over to a stationary

value, meaning that for large arguments G̃S(z) becomes
constant. Hence ρS evolves as

ρS(εA, δS , t) ∼
⎧
⎨

⎩

(t/ξ‖)−δ for 1 � t/ξ‖ � δ
−ν‖
S

δβ
S for t/ξ‖ 
 δ

−ν‖
S ,

(49)

where ξ‖ ∼ ε
−ν‖
A is the stationary correlation length of

species A.
Exactly on the curved transition line, we have δS = 0,

and ρS therefore decays forever. The unit time is set by ξ‖,
which is the life time of the largest voids of the A-process.
Close to the curved transition line, a decay of ρS with
t−δ occurs only if the time scale for saturation, ξ‖δ

−ν‖
S is

larger than the crossover time t
(2)
c , implying ∆S � εS ,

or, equivalently, δS � 1. Otherwise, as we have already
mentioned, the scaling form (48) is not valid, and satura-
tion sets in directly after the growth in regime II, without
DP-like decay of ρS .

Finally, let us compare the results once more to mean-
field theory. In mean-field theory, the two crossover times
scale in the same way, making the distinction between two
different scaling forms unnecessary and removing the in-
termediate growth in regime II close to the critical line,
where the DP-like decay of ρS becomes visible. The val-
ues of the exponents are in mean-field theory β = y = θ =
ν‖ = 1. The behavior in regime III near the critical line
that we found in mean-field theory resembles qualitatively
the one described in this section. In particular, the propor-
tionality factor between ρS and ∆S diverges at the mul-
ticritical point, and so does the factor in front of the t−δ

decay.

6 Conclusions

In this paper we have introduced a simple model of
two competing species A and S feeding on the same re-
sources and living in “patches” represented by lattice sites.
Species A is characterized by fast reproduction and can
therefore displace species S and evolves independently ac-
cording to the dynamic rules of a contact process. Hence
it belongs to the universality class of directed percola-
tion. Special S has a lower reproduction rate and is there-
fore restricted to live in those patches where A is absent.
In contrast to species A, which can die out in a patch,
patches occupied by species S do not become empty spon-
taneously.

In one spatial dimension, the phase diagram comprises
two different phases where one of the species goes extinct,
separated by a first-order transition line. In higher dimen-
sions an additional mixed phase emerges, bounded by two
continuous transition lines. This mixed phase is charac-
terized by a non-trivial coexistence of the two species in
the stationary state1.

1 We note that by increasing the width of the one-
dimensional system from one lattice site to several lattice sites
(e.g. a strip of 2 × L sites), one can generate a modified ver-
sion of the model where the two species can coexist even in
one dimension, and where the phase transition of S is also
continuous.
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The curved phase transition line (except for the mul-
ticritical point) is found to belong to the DP universality
class. This result may be surprising because S-individuals
do not vanish spontaneously. On the other hand the result
is also plausible since species S ‘percolates’ in the voids
of the supercritical DP of species A. Since the spatio-
temporal arrangement of species A involves only short-
range correlations these voids are uncorrelated on large
scales, which effectively leads to a DP transition.

At the multicritical point the correlation lengths of the
A-process diverges, leading to a non-trivial scaling behav-
ior. In this case, starting with a mixed random initial con-
ditions, S-occupied patches mark those lattice sites that
have been never visited by a species A before. Therefore,
the density ρS decays in the same way as the so-called
local persistence probability in DP. For λS > 0, however,
this decay crosses over to an increase of ρS when the re-
production of S becomes visible. This increase continues
until a stationary state is reached in which the two species
coexist if the parameters are not too close to the curved
phase transition line. Close to the curved phase transi-
tion line, ρS decreases again after times long enough that
ρA has become stationary and saturates eventually at a
small nonzero value depending on the distance to the criti-
cal line. We succeeded in introducing scaling variables and
scaling functions that characterize the behavior of ρS in
the different regimes.
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Täuber, Phys. Rev. E 59, 6381 (1999)
16. K.E. Bassler, D.A. Browne, Phys. Rev. Lett. 77, 4094

(1996)
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